36 research outputs found

    Covering Pairs in Directed Acyclic Graphs

    Full text link
    The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this paper, we study the computational complexity of two constrained variants of Minimum Path Cover motivated by the recent introduction of next-generation sequencing technologies in bioinformatics. The first problem (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum cardinality set of paths "covering" all the vertices such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The second problem (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a path containing the maximum number of the given pairs of vertices. We show its NP-hardness and also its W[1]-hardness when parametrized by the number of covered pairs. On the positive side, we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree, a natural parameter in the bioinformatics applications of the problem

    Patrolling a path connecting a set of points with unbalanced frequencies of visits

    Get PDF
    Patrolling consists of scheduling perpetual movements of a collection of mobile robots, so that each point of the environment is regularly revisited by any robot in the collection. In previous research, it was assumed that all points of the environment needed to be revisited with the same minimal frequency. In this paper we study efficient patrolling protocols for points located on a path, where each point may have a different constraint on frequency of visits. The problem of visiting such divergent points was recently posed by Gąsieniec et al. in [14], where the authors study protocols using a single robot patrolling a set of n points located in nodes of a complete graph and in Euclidean spaces. The focus in this paper is on patrolling with two robots. We adopt a scenario in which all points to be patrolled are located on a line. We provide several approximation algorithms concluding with the best currently known 3 -approximation

    Patrolling on Dynamic Ring Networks

    Get PDF
    We study the problem of patrolling the nodes of a network collaboratively by a team of mobile agents, such that each node of the network is visited by at least one agent once in every I(n)I(n) time units, with the objective of minimizing the idle time I(n)I(n). While patrolling has been studied previously for static networks, we investigate the problem on dynamic networks with a fixed set of nodes, but dynamic edges. In particular, we consider 1-interval-connected ring networks and provide various patrolling algorithms for such networks, for k=2k=2 or k>2k>2 agents. We also show almost matching lower bounds that hold even for the best starting configurations. Thus, our algorithms achieve close to optimal idle time. Further, we show a clear separation in terms of idle time, for agents that have prior knowledge of the dynamic networks compared to agents that do not have such knowledge. This paper provides the first known results for collaborative patrolling on dynamic graphs

    Path Planning in O/1/infinity Weighted Regions with Applications

    Full text link
    Path Planning in O/1/infinity Weighted Regions with Application
    corecore